Revealing the underlying mechanism of microbeam radiation therapy with low energy Monte Carlo simulations
نویسندگان
چکیده
Microbeam radiation therapy (MRT) is a new experimental oncological modality, intended for the treatment of inoperable brain tumours, particularly in difficult cases where conventional radiation therapy can cause irreversible damage. MRT consists of an array of highly collimated, quasi-parallel x-ray microbeams aimed at the tumour tissue, delivering high dose within the beam path and low doses in regions between the beams. For reasons still not fully understood, healthy tissue exposed to the microbeam array is able to regenerate while tumour volumes are significantly reduced. Low energy Monte Carlo radiative transport simulations provide new insight into understanding the underlying mechanisms of MRT. In particular, predicting the ionisation cluster distribution, which is a significant cause of lethal damage to cells, would provide insight into the biological responses. Geant4-DNA was used to model an x-ray microbeam of width 20μm in liquid water. Secondary electrons, predominately responsible for ionisation clustering, were tracked to predict damage to cells within and adjacent to the beams. We find that higher energy beams (100 keV) produce less secondary electrons in the regions outside the beam than low energy beams (30-50 keV).
منابع مشابه
Monte Carlo characterization of photoneutrons in the radiation therapy with high energy photons: a Comparison between simplified and full Monte Carlo models
Background: The characteristics of secondary neutrons in a high energy radiation therapy room were studied using the MCNPX Monte Carlo (MC) code. Materials and Methods: Two MC models including a model with full description of head components and a simplified model used in previous studies were implemented for MC simulations. Results: Results showed 4-53% difference between full and wit...
متن کاملEvaluation of the dose and flux of secondary particles in the lung tissue in breast proton therapy using the Monte Carlo simulation code
Unlike proton therapy, conventional radiation therapy directs X-rays not only at the tumor but also unavoidably at nearby healthy tissue. Protons deliver radiation to tumor tissue while the healthy structures will be spared during proton therapy. When protons travel through matter, secondary particles like neutrons and photons are produced. It is believed that the secondary dose can lead to sec...
متن کاملSecondary Particles Produced by Hadron Therapy
Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...
متن کاملMonte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
Microbeam therapy is established as a general concept for brain tumour treatment. A synchrotron based x-ray source was chosen for experimental research into microbeam therapy, and therefore new simulations were essential for investigating the therapy parameters with a proper description of the synchrotron radiation characteristics. To design therapy parameters for tumour treatments, the newly u...
متن کاملA comparison of arrived dose to the heart in the treatment of breast cancer in different modes of proton radiation by proton therapy using Monte Carlo simulation
Introdution: Today, the Advantages of radiation therapy by charged particles is indicated for the treatment of cancerous. During the passing of proton beam in the body tissues, secondary particles produce, which penetrate to the body healthy tissues and cause damage. The aim of this research was calculating the Spread out Bragg Peak for covering the breast cancer and investigating arrived dose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013